155 research outputs found

    Evaluatie en waardering van de archeologische sites Rooiveld-Papenvijvers(Oostkamp, provincie West-Vlaanderen)

    Get PDF
    Dit rapport beschrijft de resultaten van het waarderend onderzoek op de archeologische sites Rooiveld-Papenvijvers in Oostkamp (West-Vlaanderen). De oudste sporen van menselijke activiteit in dit gebied gaan terug tot het mesolithicum. De bewoning tijdens het neolithicum is goed gedocumenteerd. Naast de opgegraven nederzetting te Waardamme Vijvers, leverde het proefsleuvenonderzoek te Papenvijvers een finaal-neolithische site (3de millennium cal BC). Verder leverden de beperkte prospecties op verschillende plaatsen, waaronder Oostkamp Nieuwenhove en Hertsberge Papevijvers, lithische artefacten op die naar alle waarschijnlijkheid tot een niet nader te bepalen fase van het neolithicum behoren. Deze situatie is vrij uniek voor Vlaanderen. Neolithische bewoning in de zandige delen van Vlaanderen ontbrak tot nog toe vrijwel, met uitzondering van enkele graven van de Klokbekercultuur. De opgraving te Waardamme Vijvers is bijzonder vanwege de ontdekking van de eerste en vooralsnog enige huisplattegrond uit het neolithicum in Vlaanderen. Sporen uit de bronstijd zijn dankzij de luchtfotografie heel talrijk in het gebied. Het desktop onderzoek leverde in totaal een negental cirkelvormige structuren op die naar alle waarschijnlijkheid mogen geïnterpreteerd worden als resten van grafheuvels uit de vroege en midden-bronstijd. Het is ook duidelijk dat de regio in de bronstijd bewoond was, o.a. door de opgraving op de site Waardamme Vijvers. Voor de ijzertijd is de situatie vermoedelijk gelijklopend. De enige nederzetting die uit deze periode werd aangetroffen komt eveneens uit de opgraving in Waardamme Vijvers. Voor de Romeinse periode beschikken we slechts over de sporen van een grafveld op Waardamme Vijvers en keramiekvondsten. Latere periodes zijn alleen via cartografische bronnen gedocumenteerd. Het rapport eindigt met aanbevelingen voor verder onderzoek en beheer van dit gebied

    Revisiting the Immune Trypanolysis Test to Optimise Epidemiological Surveillance and Control of Sleeping Sickness in West Africa

    Get PDF
    Human African trypanosomiasis (HAT) due to Trypanosoma brucei (T.b.) gambiense is usually diagnosed using two sequential steps: first the card agglutination test for trypanosomiasis (CATT) used for serological screening, followed by parasitological methods to confirm the disease. Currently, CATT will continue to be used as a test for mass screening because of its simplicity and high sensitivity; however, its performance as a tool of surveillance in areas where prevalence is low is poor because of its limited specificity. Hence in the context of HAT elimination, there is a crucial need for a better marker of contact with T.b. gambiense in humans. We evaluated here an existing highly specific serological tool, the trypanolysis test (TL). We evaluated TL in active, latent and historical HAT foci in Guinea, Côte d'Ivoire and Burkina Faso. We found that TL was a marker for exposure to T.b. gambiense. We propose that TL should be used as a surveillance tool to monitor HAT elimination

    Murine Models for Trypanosoma brucei gambiense Disease Progression—From Silent to Chronic Infections and Early Brain Tropism

    Get PDF
    Trypanosoma brucei gambiense is responsible for more than 90% of reported cases of human African trypanosomosis (HAT). Infection can last for months or even years without major signs or symptoms of infection, but if left untreated, sleeping sickness is always fatal. In the present study, different T. b. gambiense field isolates from the cerebrospinal fluid of patients with HAT were adapted to growth in vitro. These isolates belong to the homogeneous Group 1 of T. b. gambiense, which is known to induce a chronic infection in humans. In spite of this, these isolates induced infections ranging from chronic to silent in mice, with variations in parasitaemia, mouse lifespan, their ability to invade the CNS and to elicit specific immune responses. In addition, during infection, an unexpected early tropism for the brain as well as the spleen and lungs was observed using bioluminescence analysis. The murine models presented in this work provide new insights into our understanding of HAT and allow further studies of parasite tropism during infection, which will be very useful for the treatment and the diagnosis of the disease

    Metabolomics to unveil and understand phenotypic diversity between pathogen populations

    Get PDF
    Visceral leishmaniasis is caused by a parasite called Leishmania donovani, which every year infects about half a million people and claims several thousand lives. Existing treatments are now becoming less effective due to the emergence of drug resistance. Improving our understanding of the mechanisms used by the parasite to adapt to drugs and achieve resistance is crucial for developing future treatment strategies. Unfortunately, the biological mechanism whereby Leishmania acquires drug resistance is poorly understood. Recent years have brought new technologies with the potential to increase greatly our understanding of drug resistance mechanisms. The latest mass spectrometry techniques allow the metabolome of parasites to be studied rapidly and in great detail. We have applied this approach to determine the metabolome of drug-sensitive and drug-resistant parasites isolated from patients with leishmaniasis. The data show that there are wholesale differences between the isolates and that the membrane composition has been drastically modified in drug-resistant parasites compared with drug-sensitive parasites. Our findings demonstrate that untargeted metabolomics has great potential to identify major metabolic differences between closely related parasite strains and thus should find many applications in distinguishing parasite phenotypes of clinical relevance

    Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background

    Get PDF
    The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability

    Prevalence of Human African Trypanosomiasis in the Democratic Republic of the Congo

    Get PDF
    Human African Trypanosomiasis (HAT) is a major public health problem in the Democratic Republic of the Congo (DRC). Active and passive surveillance for HAT is conducted but may underestimate the true prevalence of the disease. We used ELISA to screen 7,769 leftover dried blood spots from a nationally representative population-based survey, the 2007 Demographic and Health Survey. 26 samples were positive by ELISA. Three of these were also positive by trypanolysis and/or PCR. From these data, we estimate that there were 18,592 people with HAT (95% confidence interval, 4,883–32,302) in the DRC in 2007, slightly more than twice as many as were reported

    Antimonial Resistance in Leishmania donovani Is Associated with Increased In Vivo Parasite Burden

    Get PDF
    Leishmania donovani is an intracellular protozoan parasite that causes visceral leishmaniasis (VL). Antimonials (SSG) have long been the first-line treatment against VL, but have now been replaced by miltefosine (MIL) in the Indian subcontinent due to the emergence of SSG-resistance. Our previous study hypothesised that SSG-resistant L. donovani might have increased in vivo survival skills which could affect the efficacy of other treatments such as MIL. The present study attempts to validate these hypotheses. Fourteen strains derived from Nepalese clinical isolates with documented SSG-susceptibility were infected in BALB/c mice to study their survival capacity in drug free conditions (non-treated mice) and in MIL-treated mice. SSG-resistant parasites caused a significant higher in vivo parasite load compared to SSG-sensitive parasites. However, this did not seem to affect the strains' response to MIL-treatment since parasites from both phenotypes responded equally well to in vivo MIL exposure. We conclude that there is a positive association between SSG-resistance and in vivo survival skills in our sample of L. donovani strains which could suggest a higher virulence of SSG-R strains compared to SSG-S strains. These greater in vivo survival skills of SSG-R parasites do not seem to directly affect their susceptibility to MIL. However, it cannot be excluded that repeated MIL exposure will elicit different adaptations in these SSG-R parasites with superior survival skills compared to the SSG-S parasites. Our results therefore highlight the need to closely monitor drug efficacy in the field, especially in the context of the Kala-azar elimination programme ongoing in the Indian subcontinent

    Identification of Peptide Mimotopes of Trypanosoma brucei gambiense Variant Surface Glycoproteins

    Get PDF
    The control of human African trypanosomiasis or sleeping sickness, a deadly disease in sub-Saharan Africa, mainly depends on a correct diagnosis and treatment. The aim of our study was to identify mimotopic peptides (mimotopes) that may replace the native proteins in antibody detection tests for sleeping sickness and hereby improve the diagnostic sensitivity and specificity. We selected peptide expressing phages from the PhD.-12 and PhD.-C7C phage display libraries with mouse monoclonal antibodies specific to variant surface glycoprotein (VSG) LiTat 1.3 or LiTat 1.5 of Trypanosoma brucei gambiense. The peptide coding genes of the selected phages were sequenced and the corresponding peptides were synthesised. Several of the synthetic peptides were confirmed as mimotopes for VSG LiTat 1.3 or LiTat 1.5 since they were able to inhibit the binding of their homologous monoclonal to the corresponding VSG. These peptides were biotinylated and their diagnostic potential was assessed with human sera. We successfully demonstrated that human sleeping sickness sera recognise some of the mimotopes of VSG LiTat 1.3 and LiTat 1.5, indicating the diagnostic potential of such peptides
    • …
    corecore